Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448036

RESUMO

Autoinflammation is a sterile inflammatory process resulting from increased neutrophil infiltration and overexpression of IL-1 cytokines. The factors that trigger these events are, however, poorly understood. By investigating pustular forms of psoriasis, we show that human neutrophils constitutively express IL-26 and abundantly release it from granular stores upon activation. In pustular psoriasis, neutrophil-derived IL-26 drives the pathogenic autoinflammation process by inducing the expression of IL-1 cytokines and chemokines that further recruit neutrophils. This occurs via activation of IL-26R in keratinocytes and via the formation of complexes between IL-26 and microbiota DNA, which trigger TLR9 activation of neutrophils. Thus our findings identify neutrophils as an important source of IL-26 and point to IL-26 as the key link between neutrophils and a self-sustaining autoinflammation loop in pustular psoriasis.


Assuntos
Neutrófilos , Psoríase , Humanos , Interleucinas , Citocinas , Interleucina-1
2.
J Invest Dermatol ; 144(2): 252-262.e4, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37598867

RESUMO

Tissue transcriptomics is used to uncover molecular dysregulations underlying diseases. However, the majority of transcriptomics studies focus on single diseases with limited relevance for understanding the molecular relationship between diseases or for identifying disease-specific markers. In this study, we used a normalization approach to compare gene expression across nine inflammatory skin diseases. The normalized datasets were found to retain differential expression signals that allowed unsupervised disease clustering and identification of disease-specific gene signatures. Using the NS-Forest algorithm, we identified a minimal set of biomarkers and validated their use as diagnostic disease classifier. Among them, PTEN was identified as being a specific marker for cutaneous lupus erythematosus and found to be strongly expressed by lesional keratinocytes in association with pathogenic type I IFNs. In fact, PTEN facilitated the expression of IFN-ß and IFN-κ in keratinocytes by promoting activation and nuclear translocation of IRF3. Thus, cross-comparison of tissue transcriptomics is a valid strategy to establish a molecular disease classification and to identify pathogenic disease biomarkers.


Assuntos
Dermatite , Lúpus Eritematoso Cutâneo , Lúpus Eritematoso Sistêmico , Humanos , Biomarcadores/metabolismo , Dermatite/patologia , Perfilação da Expressão Gênica , Queratinócitos/metabolismo , Lúpus Eritematoso Cutâneo/diagnóstico , Lúpus Eritematoso Cutâneo/genética , Lúpus Eritematoso Cutâneo/metabolismo , Lúpus Eritematoso Sistêmico/genética , PTEN Fosfo-Hidrolase/genética , Pele/patologia
3.
Nat Commun ; 14(1): 3878, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391412

RESUMO

Interleukin (IL)-26 is a TH17 cytokine with known antimicrobial and pro-inflammatory functions. However, the precise role of IL-26 in the context of pathogenic TH17 responses is unknown. Here we identify a population of blood TH17 intermediates that produce high levels of IL-26 and differentiate into IL-17A-producing TH17 cells upon TGF-ß1 exposure. By combining single cell RNA sequencing, TCR sequencing and spatial transcriptomics we show that this process occurs in psoriatic skin. In fact, IL-26+ TH17 intermediates infiltrating psoriatic skin induce TGF-ß1 expression in basal keratinocytes and thereby promote their own differentiation into IL-17A-producing cells. Thus, our study identifies IL-26-producing cells as an early differentiation stage of TH17 cells that infiltrates psoriatic skin and controls its own maturation into IL17A-producing TH17 cells, via epithelial crosstalk involving paracrine production of TGF-ß1.


Assuntos
Psoríase , Fator de Crescimento Transformador beta1 , Humanos , Interleucina-17/genética , Diferenciação Celular , Pele
4.
Clin Cancer Res ; 29(17): 3498-3513, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327314

RESUMO

PURPOSE: Cemiplimab is approved for the treatment of locally advanced basal cell carcinomas (BCC), although with mitigated results. We sought to interrogate the cellular and molecular transcriptional reprogramming underlying BCC resistance to immunotherapy. EXPERIMENTAL DESIGN: Here, we combined spatial and single-cell transcriptomics to deconvolute the spatial heterogeneity of the tumor microenvironment in regard with response to immunotherapy, in a cohort of both naïve and resistant BCCs. RESULTS: We identified subsets of intermingled cancer-associated fibroblasts (CAF) and macrophages contributing the most to CD8 T-cell exclusion and immunosuppression. Within this spatially resolved peritumoral immunosuppressive niche, CAFs and adjacent macrophages were found to display Activin A-mediated transcriptional reprogramming towards extracellular matrix remodeling, suggesting active participation to CD8 T-cell exclusion. In independent datasets of human skin cancers, Activin A-conditioned CAFs and macrophages were associated with resistance to immune checkpoint inhibitors (ICI). CONCLUSIONS: Altogether, our data identify the cellular and molecular plasticity of tumor microenvironment (TME) and the pivotal role of Activin A in polarizing the TME towards immune suppression and ICI resistance.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Basocelular , Neoplasias Cutâneas , Humanos , Fibroblastos Associados a Câncer/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Carcinoma Basocelular/patologia , Macrófagos/patologia , Imunoterapia , Microambiente Tumoral
5.
Nat Commun ; 14(1): 3455, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308489

RESUMO

The immunopathogenesis of psoriasis, a common chronic inflammatory disease of the skin, is incompletely understood. Here we demonstrate, using a combination of single cell and spatial RNA sequencing, IL-36 dependent amplification of IL-17A and TNF inflammatory responses in the absence of neutrophil proteases, which primarily occur within the supraspinous layer of the psoriatic epidermis. We further show that a subset of SFRP2+ fibroblasts in psoriasis contribute to amplification of the immune network through transition to a pro-inflammatory state. The SFRP2+ fibroblast communication network involves production of CCL13, CCL19 and CXCL12, connected by ligand-receptor interactions to other spatially proximate cell types: CCR2+ myeloid cells, CCR7+ LAMP3+ dendritic cells, and CXCR4 expressed on both CD8+ Tc17 cells and keratinocytes, respectively. The SFRP2+ fibroblasts also express cathepsin S, further amplifying inflammatory responses by activating IL-36G in keratinocytes. These data provide an in-depth view of psoriasis pathogenesis, which expands our understanding of the critical cellular participants to include inflammatory fibroblasts and their cellular interactions.


Assuntos
Queratinócitos , Psoríase , Humanos , Pele , Fibroblastos , Células Epidérmicas
6.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36633910

RESUMO

Rosacea is a common chronic inflammatory skin disease with a fluctuating course of excessive inflammation and apparent neovascularization. Microbial dysbiosis with a high density of Bacillus oleronius and increased activity of kallikrein 5, which cleaves cathelicidin antimicrobial peptide, are key pathogenic triggers in rosacea. However, how these events are linked to the disease remains unknown. Here, we show that type I IFNs produced by plasmacytoid DCs represent the pivotal link between dysbiosis, the aberrant immune response, and neovascularization. Compared with other commensal bacteria, B. oleronius is highly susceptible and preferentially killed by cathelicidin antimicrobial peptides, leading to enhanced generation of complexes with bacterial DNA. These bacterial DNA complexes but not DNA complexes derived from host cells are required for cathelicidin-induced activation of plasmacytoid DCs and type I IFN production. Moreover, kallikrein 5 cleaves cathelicidin into peptides with heightened DNA binding and type I IFN-inducing capacities. In turn, excessive type I IFN expression drives neoangiogenesis via IL-22 induction and upregulation of the IL-22 receptor on endothelial cells. These findings unravel a potentially novel pathomechanism that directly links hallmarks of rosacea to the killing of dysbiotic commensal bacteria with induction of a pathogenic type I IFN-driven and IL-22-mediated angiogenesis.


Assuntos
Catelicidinas , Disbiose , Interferon Tipo I , Microbiota , Rosácea , Pele , Humanos , Bactérias , DNA Bacteriano , Disbiose/microbiologia , Células Endoteliais/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Calicreínas , Rosácea/metabolismo , Rosácea/microbiologia , Rosácea/patologia , Interferon Tipo I/metabolismo , Microbiota/fisiologia , Bacillus/metabolismo , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Neovascularização Patológica/microbiologia
7.
Nat Commun ; 13(1): 4897, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35986012

RESUMO

Tumors invade the surrounding tissues to progress, but the heterogeneity of cell types at the tumor-stroma interface and the complexity of their potential interactions hampered mechanistic insight required for efficient therapeutic targeting. Here, combining single-cell and spatial transcriptomics on human basal cell carcinomas, we define the cellular contributors of tumor progression. In the invasive niche, tumor cells exhibit a collective migration phenotype, characterized by the expression of cell-cell junction complexes. In physical proximity, we identify cancer-associated fibroblasts with extracellular matrix-remodeling features. Tumor cells strongly express the cytokine Activin A, and increased Activin A-induced gene signature is found in adjacent cancer-associated fibroblast subpopulations. Altogether, our data identify the cell populations and their transcriptional reprogramming contributing to the spatial organization of the basal cell carcinoma invasive niche. They also demonstrate the power of integrated spatial and single-cell multi-omics to decipher cancer-specific invasive properties and develop targeted therapies.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Carcinoma Basocelular/patologia , Comunicação Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Neoplasias Cutâneas/patologia
8.
Sci Rep ; 10(1): 17178, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057074

RESUMO

Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms.


Assuntos
Interleucinas/imunologia , Interleucinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/metabolismo , Adulto , Idoso , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Células HEK293 , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Células THP-1/imunologia , Células THP-1/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Nat Immunol ; 21(9): 1034-1045, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661363

RESUMO

Skin wounds heal by coordinated induction of inflammation and tissue repair, but the initiating events are poorly defined. Here we uncover a fundamental role of commensal skin microbiota in this process and show that it is mediated by the recruitment and the activation of type I interferon (IFN)-producing plasmacytoid DC (pDC). Commensal bacteria colonizing skin wounds trigger activation of neutrophils to express the chemokine CXCL10, which recruits pDC and acts as an antimicrobial protein to kill exposed microbiota, leading to the formation of CXCL10-bacterial DNA complexes. These complexes and not complexes with host-derived DNA activate pDC to produce type I IFNs, which accelerate wound closure by triggering skin inflammation and early T cell-independent wound repair responses, mediated by macrophages and fibroblasts that produce major growth factors required for healing. These findings identify a key function of commensal microbiota in driving a central innate wound healing response of the skin.


Assuntos
Células Dendríticas/imunologia , Fibroblastos/imunologia , Macrófagos/imunologia , Microbiota/imunologia , Neutrófilos/imunologia , Pele/imunologia , Animais , Células Cultivadas , Quimiocina CXCL10/metabolismo , Humanos , Imunidade Inata , Inflamação , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/patologia , Simbiose , Cicatrização
10.
J Invest Dermatol ; 139(7): 1426-1429, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31230639

RESUMO

A report in the June 2019 issue of the Journal of Investigative Dermatology reveals a role of neutrophil extracellular traps (NETs) in the induction of T helper type 17 cell responses and shows the relevance of this pathway in patients with psoriasis carrying a common risk variant in the TRAF3IP2 gene (Lambert et al., 2019). This work provides a new piece to the puzzle that links neutrophils to the T helper type 17-mediated pathogenesis of psoriasis.


Assuntos
Armadilhas Extracelulares , Psoríase , Proteínas Adaptadoras de Transdução de Sinal , Genótipo , Humanos , Neutrófilos , Células Th17 , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral
11.
Nat Commun ; 10(1): 1012, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833557

RESUMO

Amphiphilicity in ɑ-helical antimicrobial peptides (AMPs) is recognized as a signature of potential membrane activity. Some AMPs are also strongly immunomodulatory: LL37-DNA complexes potently amplify Toll-like receptor 9 (TLR9) activation in immune cells and exacerbate autoimmune diseases. The rules governing this proinflammatory activity of AMPs are unknown. Here we examine the supramolecular structures formed between DNA and three prototypical AMPs using small angle X-ray scattering and molecular modeling. We correlate these structures to their ability to activate TLR9 and show that a key criterion is the AMP's ability to assemble into superhelical protofibril scaffolds. These structures enforce spatially-periodic DNA organization in nanocrystalline immunocomplexes that trigger strong recognition by TLR9, which is conventionally known to bind single DNA ligands. We demonstrate that we can "knock in" this ability for TLR9 amplification in membrane-active AMP mutants, which suggests the existence of tradeoffs between membrane permeating activity and immunomodulatory activity in AMP sequences.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/imunologia , Peptídeos Catiônicos Antimicrobianos/química , DNA/química , Receptor Toll-Like 9/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Simulação por Computador , DNA/imunologia , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Ligantes , Macrófagos/efeitos dos fármacos , Modelos Moleculares , Conformação Proteica em alfa-Hélice/fisiologia , Espalhamento de Radiação , Receptor Toll-Like 9/imunologia , Difração de Raios X , Catelicidinas
12.
J Immunol ; 200(10): 3364-3371, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632142

RESUMO

Lupus erythematosus (LE) patients develop autoantibodies that form circulating immune complexes (ICs) with extracellular self-nucleic acids. These ICs are deposited into peripheral tissues, where they trigger detrimental organ inflammation. Recent evidence suggests that ICs contain LL37-DNA complexes derived from neutrophil extracellular traps (NETs) and that LE patients develop pathogenic autoantibodies against these structures, including Abs to LL37. However, the mechanism that leads to the generation of these Abs is unknown. In this study, we show that NETs directly trigger Ab production by human memory B cells. This occurs via LL37-DNA complexes present in NETs, which have the unique ability to gain access to endosomal compartments of B cells and to trigger TLR9 activation. In LE patients, NET-derived LL37-DNA complexes trigger polyclonal B cell activation via TLR9, but also specifically expand self-reactive memory B cells producing anti-LL37 Abs in an Ag-dependent manner. These findings suggest a unique link between neutrophils and B cells in which NETs trigger a concerted activation of TLR9 and BCR leading to anti-NET autoantibody production in lupus.


Assuntos
Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Neutrófilos/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Autoanticorpos/imunologia , DNA/imunologia , Armadilhas Extracelulares/imunologia , Humanos , Memória Imunológica/imunologia , Receptor Toll-Like 9/imunologia , Catelicidinas
13.
Nat Commun ; 9(1): 25, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295985

RESUMO

Although anti-tumor necrosis factor (TNF) agents are highly effective in the treatment of psoriasis, 2-5% of treated patients develop psoriasis-like skin lesions called paradoxical psoriasis. The pathogenesis of this side effect and its distinction from classical psoriasis remain unknown. Here we show that skin lesions from patients with paradoxical psoriasis are characterized by a selective overexpression of type I interferons, dermal accumulation of plasmacytoid dendritic cells (pDC), and reduced T-cell numbers, when compared to classical psoriasis. Anti-TNF treatment prolongs type I interferon production by pDCs through inhibition of their maturation. The resulting type I interferon overexpression is responsible for the skin phenotype of paradoxical psoriasis, which, unlike classical psoriasis, is independent of T cells. These findings indicate that paradoxical psoriasis represents an ongoing overactive innate inflammatory process, driven by pDC-derived type I interferon that does not lead to T-cell autoimmunity.


Assuntos
Anticorpos Monoclonais/imunologia , Autoimunidade/imunologia , Interferon Tipo I/imunologia , Psoríase/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adalimumab/efeitos adversos , Adalimumab/imunologia , Adalimumab/uso terapêutico , Adolescente , Adulto , Idoso , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Autoimunidade/efeitos dos fármacos , Células Cultivadas , Doença de Crohn/tratamento farmacológico , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Infliximab/efeitos adversos , Infliximab/imunologia , Infliximab/uso terapêutico , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Psoríase/induzido quimicamente , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
14.
Nat Immunol ; 19(1): 63-75, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29203862

RESUMO

Innate immune cells adjust to microbial and inflammatory stimuli through a process termed environmental plasticity, which links a given individual stimulus to a unique activated state. Here, we report that activation of human plasmacytoid predendritic cells (pDCs) with a single microbial or cytokine stimulus triggers cell diversification into three stable subpopulations (P1-P3). P1-pDCs (PD-L1+CD80-) displayed a plasmacytoid morphology and specialization for type I interferon production. P3-pDCs (PD-L1-CD80+) adopted a dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) displayed both innate and adaptive functions. Each subpopulation expressed a specific coding- and long-noncoding-RNA signature and was stable after secondary stimulation. P1-pDCs were detected in samples from patients with lupus or psoriasis. pDC diversification was independent of cell divisions or preexisting heterogeneity within steady-state pDCs but was controlled by a TNF autocrine and/or paracrine communication loop. Our findings reveal a novel mechanism for diversity and division of labor in innate immune cells.


Assuntos
Citocinas/imunologia , Células Dendríticas/imunologia , Expressão Gênica/imunologia , Imunidade Inata/imunologia , Imunidade Adaptativa/imunologia , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Perfilação da Expressão Gênica/métodos , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Microscopia Eletrônica de Transmissão , Orthomyxoviridae/imunologia , Psoríase/imunologia
15.
Methods Mol Biol ; 1559: 83-90, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28063039

RESUMO

Psoriasis is a chronic autoimmune skin disease affecting approximately 2 % of the population with a major psychosocial and socioeconomic impact. A causal therapy leading to permanent cure is not available, and current treatments only lead to limited amelioration, and therefore new therapeutic targets need to be identified. Recent works demonstrated a predominant role of TH17 cells in the pathogenesis of psoriasis; yet the underlying molecular mechanisms driving the development of the disease are still largely elusive. Several mouse models of psoriasis including drug-induced models (topical application of imiquimod to the skin) and genetically engineered mice (constitutive activation of epidermal STAT3, epidermal deletion of JunB/c-Jun, and epidermal overexpression of Tie2) have been used to study the pathophysiology of the disease; however such models cannot fully recapitulate all molecular and cellular pathways occurring in human psoriasis. Xenotransplantation of human pre-psoriatic skin onto immunodeficient mice and triggering its conversion into a psoriatic plaque is the best model to dissect the mechanisms occurring during the development of human psoriasis. One model is based on the transplantation of human pre-psoriatic skin onto SCID mice followed by the transfer of activated autologous T cells. The ex vivo activation of T cells required to induce the psoriatic conversion of the graft limits the study of early events in the pathogenesis of psoriasis. Another model is based on transplantation of human pre-psoriatic skin onto AGR129 mice. In this model, the skin grafting is sufficient to activate human cells contained in the graft and trigger the conversion of the graft into a psoriatic skin, without the need of transferring activated T cells. Here we review the methodological aspects of this model and illustrate how this model can be used to dissect early events of psoriasis pathogenesis.


Assuntos
Células Dendríticas/imunologia , Citometria de Fluxo/métodos , Psoríase/imunologia , Transplante de Pele/métodos , Linfócitos T/imunologia , Transplante Heterólogo/métodos , Animais , Células Dendríticas/patologia , Derme/imunologia , Derme/patologia , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/patologia , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/metabolismo , Interleucina-23/biossíntese , Interleucina-23/metabolismo , Camundongos , Camundongos SCID , Psoríase/patologia , Transplante de Pele/instrumentação , Linfócitos T/patologia , Transplante Heterólogo/instrumentação
16.
Rev Med Suisse ; 12(512): 660-4, 2016 Mar 30.
Artigo em Francês | MEDLINE | ID: mdl-27172697

RESUMO

The skin contains many commensal bacteria. For years, these microbes have been considered to be exploiters of the human host for nutrients. However, recent findings indicates that the skin microbiota is also used by the human host to protect himself against invading pathogens as the commensal bacteria have direct antimicrobial capacity and provide factors required to mount a protective immune responses in the skin. While the healthy skin microbiome functions as guardians of host defense, increased or decreased bacterial composition of the skin microbiome (called dysbiosis) leads to skin inflammation and disease. Here we will review the emerging data on the role of distinct types of dysbiosis in the pathogenesis skin diseases and illustrate how the new understanding of the role of the skin microbiome has implications in the clinical management of skin diseases.


Assuntos
Microbiota/fisiologia , Pele/microbiologia , Acne Vulgar/microbiologia , Acne Vulgar/patologia , Dermatite Atópica/microbiologia , Dermatite Atópica/patologia , Disbiose/microbiologia , Disbiose/patologia , Disbiose/terapia , Humanos , Psoríase/microbiologia , Psoríase/patologia , Dermatopatias Infecciosas/microbiologia , Dermatopatias Infecciosas/patologia , Dermatopatias Infecciosas/terapia , Simbiose/fisiologia
17.
J Immunol ; 196(4): 1900-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773151

RESUMO

Type I IFNs (IFN-I) are key innate mediators that create a profound antiviral state and orchestrate the activation of almost all immune cells. Plasmacytoid dendritic cells (pDCs) are the most powerful IFN-I-producing cells and play important roles during viral infections, cancer, and autoimmune diseases. By comparing gene expression profiles of murine pDCs and conventional DCs, we found that CD28, a prototypic T cell stimulatory receptor, was highly expressed in pDCs. Strikingly, CD28 acted as a negative regulator of pDC IFN-I production upon TLR stimulation but did not affect pDC survival or maturation. Importantly, cell-intrinsic CD28 expression restrained pDC (and systemic) IFN-I production during in vivo RNA and DNA viral infections, limiting antiviral responses and enhancing viral growth early after exposure. Finally, CD28 also downregulated IFN-I response upon skin injury. Our study identified a new pDC regulatory mechanism by which the same CD28 molecule that promotes stimulation in most cells that express it is co-opted to negatively regulate pDC IFN-I production and limit innate responses.


Assuntos
Antígenos CD28/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Animais , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
19.
Proc Natl Acad Sci U S A ; 112(50): 15408-13, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26607445

RESUMO

Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.


Assuntos
Células Endoteliais/metabolismo , Imunidade , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/imunologia , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Células Endoteliais/efeitos dos fármacos , Injeções Intralesionais , Interferon Tipo I/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Nucleotídeos Cíclicos/administração & dosagem , Nucleotídeos Cíclicos/farmacologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Cell Rep ; 12(7): 1120-32, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26257170

RESUMO

Here, we examine the mechanism by which plasmacytoid dendritic cells (pDCs) and type I interferons promote humoral autoimmunity. In an amyloid-induced experimental autoimmune model, neutrophil depletion enhanced anti-nuclear antibody development, which correlated with heightened IFN-γ production by natural killer (NK) cells. IFN-α/ß produced by pDCs activated NK cells via IL-15 induction. Neutrophils released reactive oxygen species (ROS), which negatively modulated the levels of IL-15, thereby inhibiting IFN-γ production. Mice deficient in NADPH oxidase 2 produced increased amounts of IFN-γ and developed augmented titers of autoantibodies. Both the pDC-IFN-α/ß pathway and IFN-γ were indispensable in stimulating humoral autoimmunity. Male NZB/W F1 mice expressed higher levels of superoxide than their female lupus-prone siblings, and depletion of neutrophils resulted in spontaneous NK cell and autoimmune B cell activation. Our findings suggest a regulatory role for neutrophils in vivo and highlight the importance of an NK-IFN-γ axis downstream of the pDC-IFN-α/ß pathway in systemic autoimmunity.


Assuntos
Autoimunidade , Células Dendríticas/imunologia , Imunidade Humoral , Interferon gama/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linfócitos B/imunologia , Feminino , Interferon gama/genética , Interleucina-15/genética , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...